If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x^2)+5x=1400
We move all terms to the left:
(x^2)+5x-(1400)=0
a = 1; b = 5; c = -1400;
Δ = b2-4ac
Δ = 52-4·1·(-1400)
Δ = 5625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5625}=75$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-75}{2*1}=\frac{-80}{2} =-40 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+75}{2*1}=\frac{70}{2} =35 $
| Y-8=-1/2(x-(-2) | | s-41=19 | | (1/3)x=1/81 | | 18x+1/2=6(3x=25) | | Y-8=-1/2(x-(-2)) | | 36=t-23 | | 4+m=44 | | X*x*6=94 | | -1x=25x | | 74=2p | | (-4)x=-64 | | 7x-5=23+4x | | 5=p/6 | | -3x(x+7)(4x-1)=0 | | -15=-2r-19 | | Y-4=6(x-7) | | 45x=50x | | 10=70/v | | 6(x+6)-12=60 | | Y-(-2)=-6(x-7) | | 74=g+44 | | -15=-2r-16 | | x²-2x+3=0 | | 10^-8+4x3=288 | | 95=5r | | 61=3x+5 | | 2x+3(-x^2-1)=-3x^2+2(x-1)-3(x+2) | | Y-(-2)=6(x-7) | | 3u+9=7(u+3) | | 11n+70=16n-25 | | 2r−8=6 | | 51g-22=64g-61 |